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End-Stopping Predicts Curvature Tuning along the Ventral
Stream
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Neurons in primate inferotemporal cortex (IT) are clustered into patches of shared image preferences. Functional imaging has shown that
these patches are activated by natural categories (e.g., faces, body parts, and places), artificial categories (numerals, words) and geometric
features (curvature and real-world size). These domains develop in the same cortical locations across monkeys and humans, which raises
the possibility of common innate mechanisms. Although these commonalities could be high-level template-based categories, it is alter-
natively possible that the domain locations are constrained by low-level properties such as end-stopping, eccentricity, and the shape of
the preferred images. To explore this, we looked for correlations among curvature preference, receptive field (RF) end-stopping, and RF
eccentricity in the ventral stream. We recorded from sites in V1, V4, and posterior IT (PIT) from six monkeys using microelectrode arrays.
Across all visual areas, we found a tendency for end-stopped sites to prefer curved over straight contours. Further, we found a progression
in population curvature preferences along the visual hierarchy, where, on average, V1 sites preferred straight Gabors, V4 sites preferred
curved stimuli, and many PIT sites showed a preference for curvature that was concave relative to fixation. Our results provide evidence
that high-level functional domains may be mapped according to early rudimentary properties of the visual system.
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Introduction
We are interested in the organizational principles of the object-
recognition network in the macaque, which includes areas V1,
V2, V4, and inferotemporal cortex (IT). IT is subdivided into

domains responsive to naturally occurring categories such as
faces and scenes (Kourtzi and Kanwisher, 2000; Tsao et al., 2006;
Bell et al., 2011). With experience, IT cortex can develop domains
for artificial categories such as buildings or text (Hasson et al.,
2002; Cohen and Dehaene, 2004; Srihasam et al., 2014). Interest-
ingly, these domains develop in stereotyped locations in IT.
Previously, we investigated the effects of early training on the
organization of IT and found that training could induce the de-
velopment of domains for images never normally experienced by
monkeys, such as human symbols (Srihasam et al., 2014). We
further found that trained-symbol domain locations seemed to
be determined by the shape of the stimuli: selectivity for symbol
sets with curved contours were localized along the lower lip of the
superior temporal cortex, whereas selectivity for symbol sets with
straight edges were localized in more ventral IT. The importance
of curvature in occipitotemporal cortex is emphasized by the
existence of a distributed network of cortical patches that re-
spond to curved stimuli (Yue et al., 2014). However, this raises
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Significance Statement

The macaque occipitotemporal cortex contains clusters of neurons with preferences for categories such as faces, body parts, and places.
One common question is how these clusters (or “domains”) acquire their cortical position along the ventral stream. We and other
investigators previously established an fMRI-level correlation among these category domains, retinotopy, and curvature preferences: for
example, ininferotemporalcortex, face-andcurvature-preferringdomainsshow acentralvisual fieldbiaswhereasplace- andrectilinear-
preferring domains show a more peripheral visual field bias. Here, we have found an electrophysiological-level explanation for the
correlation among domain preference, curvature, and retinotopy based on neuronal preference for short over long contours, also called
end-stopping.
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the question of why curvature preferences should be distributed
along the ventral stream at all. The observation that a selectivity
gradient of curved versus straight contours correlated with the
retinotopic map in visual cortex suggests that the curvature gra-
dient is determined by the retinotopic map (Srihasam et al.,
2014). We hypothesized that this correlation results from a com-
bination of receptive field (RF) size and end-stopping.

Neurons with foveal RFs have smaller RFs compared with
neurons with more peripheral RFs. Because many neurons are
selective for stimulus length; that is,“end-stopped” or “hyper-
complex” (Hubel and Wiesel, 1965), this size gradient includes
not only RF size and spatial frequency, but also selectivity for
stimulus length. End-stopped cells respond best to short lines,
showing weaker responses when the line is extended into their
inhibitory surround; this inhibition is contextual because it is
reduced if the orientation in the surround differs from the orien-
tation in the center (Hubel and Wiesel, 1965). Frequently visual-
ized as an arrangement of inhibitory zones along the length of the
oriented activating region (which forms the cell’s orientation
preference), end-stopping has been shown to be approximately
symmetrical along the width of the activating zone (Sceniak et al.,
2001). End-stopping is a plausible mechanism underlying selec-
tivity for high-curvature features such as end points and curved
or bent contours compared with long straight contours propor-
tional to RF size (Hubel and Livingstone, 1987). In the cat, end-
stopped V1 neurons respond best to high-curvature contours
compared with non-end-stopped neurons (Dobbins et al., 1987).
These high-curvature features are prevalent in some visual object
categories such as faces and can be more salient in foveal com-
pared with peripheral vision (Fig. 1). Therefore, smaller, more
central, RFs may be better at encoding sharp changes in orienta-
tion and the larger RFs at increasing eccentricities better at en-
coding long, straight edges or gradually curving contours.

To find out whether curvature selectivity correlates with end-
stopping in the primate, we recorded from 870 cortical sites
across areas V1, V4, and posterior IT (PIT) in six monkeys. We
presented “banana” Gabors (Ibrahim, 2012) with different cur-
vatures, orientations, and diameters and analyzed the responses
from single units and multi-units. We found that sites that
showed end-stopping preferred curved contours and this corre-
lation was found in every recorded area. Further, we discovered
that many sites in PIT prefer concave curvatures (relative to the
fixation point) and that there is a small but reliable relationship
between cells with concave preferences and face discrimination.
These results indicate that an organization for curvature selectiv-
ity (and thereby shape selectivity) emerges inherently with the
gradation in RF size that characterizes a retinotopic map. We

propose that this provides an organizing principle for the func-
tional architecture of the ventral stream, as well as a mechanistic
link between the observations that face, body, and scene patch
locations are correlated both with retinotopy (Levy et al., 2001;
Hasson et al., 2002) and with selectivity for degree of curvature
(Nasr and Tootell, 2012; Kornblith et al., 2013; Yue et al., 2014).

Materials and Methods
Procedures. All procedures were approved by the Harvard Medical School
Institutional Animal Care and Use Committee following the National
Institutes of Health’s Guide for the Care and Use of Laboratory Animals,
eighth edition. This article conforms to the ARRIVE Guidelines checklist.

Husbandry. The animals were socially housed in standard primate
caging under a 12 h light/dark cycle with ad libitum access to chow. Water
and fruits were available during experimental sessions.

Behavior. Six adult male macaques (F, G, R, T, U, and V) weighing
8 –11 kg were trained to perform a fixation task. They were rewarded for
keeping their keeping their gaze within �1° (monkeys F, T, U, and V) or
�1.3° (monkeys G and R) from the fixation spot while images were
flashed elsewhere in the visual field. Eye position was monitored using an
ISCAN system (www.iscaninc.com).

Electrophysiology hardware. All animals were implanted with head
posts before fixation training. Monkeys F, G, T, U, and V all had multi-
electrode arrays (96-electrode Utah-arrays or 64-electrode floating mi-
croelectrode arrays; Blackrock and Microprobes for Life Sciences).
Monkey R had a chronic chamber for acute recordings using bundles of
three electrodes. Monkeys U and V had arrays implanted in left/right V1
cortex, monkey R had a chamber over left V1, monkeys F and T over
right/left V4 (between the lunate sulcus and superior temporal sulcus, 25
mm dorsal/7 mm posterior to the ear bars) and monkey G over the left
PIT (anterior to the inferior occipital sulcus and posterior to middle
posterior temporal sulcus). We collected electrophysiological informa-
tion, including high-frequency (“spike”) events, local field potentials,
and other experimental variables such as eye position, reward rate, and
photodiode outputs tracking monitor frame display timing using either
Blackrock’s Cerebus Neural Signal Processor data acquisition system or a
Plexon Multichannel Acquisition Processor Data Acquisition System.
Each channel was auto-configured daily for the optimal gain and thresh-
old; we collected all electrical events that crossed a threshold of 2.5–3.9
SDs from the mean peak height of the distribution of electrical signal
amplitudes per channel. These signals included typical single-unit wave-
forms, multi-unit waveform bursts, and visually active hash.

Experimental workflow. Each day, the animals performed their fixation
task while we recorded from their arrays/chamber. The trial timeline in
all experiments was as follows: at the start of each trial, the fixation target
appeared and the animal had several seconds to direct its gaze to it.
Within tens to hundreds of milliseconds after fixation onset, images were
flashed on and off (200 ms-ON/200 ms-OFF for monkeys R and G; 133
ms-ON/120 ms-OFF for monkeys U, V, and F; and 147 ms-ON, 107
ms-OFF for monkey T). Images were presented on a gray background. If
the animals held fixation during a subset of image presentations, they

a b

Figure 1. Natural scenes and curvature detection. a, Photograph of Torsten Wiesel and David Hubel �courtesy Francis A. Countway Library of Medicine, https://cms.www.countway.harvard.
edu/wp/?tag�david-h-hubel�. b, Line drawing of Hubel showing the distribution of the RF size of end-stopped cells that would respond best to different parts of the image.
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were rewarded with drops of water or juice. The reward size was in-
creased over time for motivation.

Visual stimuli. The curved (“banana”) Gabors were generated using
MATLAB code based on formulas from Mina Ibrahim Samaan Ibrahim’s
research thesis (Ibrahim, 2012). These images were a composite of a
curved complex wavelet and a Gaussian, described by four parameters:
spatial frequency, orientation, curvature and size as follows:

B� x, y� � � � G� x, y� � F� x, y� � DC

where � � constant, G(x, y) � exp ��f 2

2
� ��xc � c � xs

2�2

�x
2 �

xs
2

�y
2 � s2��,

F�x, y� � exp�i � f � �xc � c � xs
2�, xc � x � cos� � y � sin�, xs �

�x � sin� � y � cos�, and DC is a bias term. We plugged in 8 orientation
values (0 to 7/8*� radians in intervals of 1/8*� radians), 5 curvature
values (�8, �6, �, �6, �8), and 4 Gaussian size values (0, 1, 2, and 3).
The Gaussian sizes were relative to the size of the image frame, with the
largest Gaussian size value (3) allowing the wavelet to cover 	87% of the
frame diameter, size value 2 covering 43%, size value 1 22%, and size
value 0 11% of the frame diameter. The stimulus dimensions were
(2.5° 
 2.5°) for V1 experiments, (9° 
 9°) for V4 experiments, and
(9° 
 9°) and (18° 
 18°) for PIT experiments. The Gabors kept the same
number of cycles per image, so the corresponding spatial frequency val-
ues were 5.0 cycles/° for V1, 1.4 cycles/° for V4, and between 0.7 and 1.4
cycles/° in PIT. The images had gray backgrounds. There was a mean of
38 � 8 repetitions per image across all experiments.

General information analysis. We collected data in 33 experiments using
six different animals (monkey F, two sessions; monkey G, three sessions;
monkey R, 24 sessions; monkey T, two sessions; and monkeys U and V, one
session each). Data from arrays were largely multi-unit. Data from the acute
recordings (monkey R) were collected after isolating at least one single unit
in a given channel of the microwire bundle. We used the term “site” to refer
to single units and multi-units. This raises the question of whether it was
reasonable to treat these signals equally. In primate cortex, there are strong
correlations between single-unit and multi-unit responses, especially if the
visual stimulus features in question are organized in functional cortical maps
(Liu and Newsome, 2003). For example, V1 and V4 are characterized by
columns of individual cells with shared orientation preferences (Hubel and
Wiesel, 1968; Ghose and Ts’o, 1997) and IT has columns of cells with similar
complex shape selectivity (Wang et al., 1996; Tsunoda et al., 2001; Tsao et al.,
2006; Sato et al., 2009; Bell et al., 2011); this shape-based organization likely
subsumes curvature. Surround suppression (of which end-stopping is one
manifestation) is also functionally organized in V4 (Ghose and Ts’o, 1997)
and even MT (Born, 2000). Therefore, we find it reasonable that our multi-
unit activity data is representative of single-unit properties. In three monkeys
(F, G, and T), we recorded from the same array on multiple days. Explor-
atory analyses showed that image responses recorded from the same channel
could be correlated across days with respect to their preferred stimuli, but
not reliably enough to be considered identical sites, especially in multivariate
analyses, in which the same set of channels represented the same image in
different locations of activity space in different days. Because some of our
analyses used linear classifiers, we found it preferable to treat the signals
recorded from different days as different sites. With this caveat in mind, our
total site count per monkey was as follows: monkey V, 96 
 1 (channels 

days) � 96; monkey U, 96 
 1 � 96; monkey R, 6 
 24 � 144; monkey F,
96 
 2 � 192; monkey T, 96 
 2 � 192; and monkey G, 50 
 3 � 150) for
a total of 870 sites. For our linear classification analyses, we also added an
additional four experiments (from monkeys T and G) recorded on the same
days as the experiments above, with the same experimental parameters ex-
cept a different stimulus image size.

RFs analysis. To estimate the RF of each site, we presented a small
image in a grid-like pattern across a large region of visual space. The grid
spacing varied from animal to animal, between (0.5–2°) encompassing a
region between (2° 
 2°) for V1 and (16° 
 16°) for PIT. We measured
the mean spike rate over each stimulus position and used the MATLAB
function griddata.m to interpolate the scattered data into a continuous
map. This map was smoothed using a disk filter (0.5° diameter for mon-
key F, 1° diameter for monkey G, and 0.1° diameter for all other animals).
This map represented the aggregate RF of each site in our arrays. We

passed this map through a threshold to exclude activity that was 2–3 SDs
below the average rate over all positions. We then passed each map
through the edge.m function to obtain the perimeter of the estimated RFs
and the imdilate.m function to fill the perimeters with a constant value.
As measures of statistical strength, we multiplied each RF perimeter by
the peak firing rate at its center (effect size) and, for each site, we also
conducted a Wilcoxon signed-rank test for zero median at every stimulus
location, correcting for multiple comparisons via the false discovery rate
algorithm. We then repeated the analysis above using only stimulus lo-
cations where the corrected p-value was �0.05 to highlight the most
reliable RF estimates. We used regionprops.m to return the RF center
locations, which we used to measure the size and eccentricity of each field
and its distance from the stimulus center.

One-dimensional tuning curves and preferred values analysis. Each ba-
nana Gabor was described by three features: orientation, curvature, and
Gaussian envelope size (“size”). Orientation could take eight values, cur-
vature could take five values, and size could also take four nominal values
(see “Visual stimuli”). All images had the same dimensions within each
experiment; only the Gaussian diameter varied across images. We com-
puted each tuning curve as follows: orientation tuning curves were mea-
sured using only responses to straight Gabors (curvature 0) averaged
over all sizes (the location of the peak response was taken as the preferred
orientation). The size-tuning curve was measured using only responses
to Gabors at the preferred orientation averaged across all curvature val-
ues (the location of the peak of the curve was taken as the preferred size).
The curvature-tuning curve was measured using responses to the pre-
ferred orientation averaged across all sizes (the location of the peak of the
curve was taken as the preferred curvature).

To determine whether a given tuning curve was statistically different
from uniformity, we computed a one-way ANOVA using each site’s trial
responses for each feature value. Tuning was defined as statistically reli-
able if p � 0.05. We fitted each site’s convexity-tuning function using a
polynomial of the form R � Aquadx2 � Alinearx � C, where R is the
model value, Aquad measures the magnitude of the quadratic component,
Alinear is the linear component, C is the offset, and x is the stimulus
convexity value scaled as (�2, �1, 0, 1, 2). Individual trial responses per
site were normalized such that the maximum mean response was 1 and
the minimum mean response was 0; due to this transformation, both
Aquad and Alinear were arithmetically bounded to the range �0.25 to 0.25.
We also fit each orientation tuning curve with a von Mises model of the
form R � b � a � e�sin����0�/d�) where a is the amplitude, b is the offset, �0

is the curve center, and d is the inverse dispersion value (1/d is equivalent
to tuning width). Goodness-of-fit was described by R 2, the coefficient of
determination. All fits above were done using the individual trial data
with the fit.m MATLAB function.

Size and curvature analysis. We computed the end-stopping index by
fitting each site’s size tuning curve measured at each site’s preferred
orientation and curvature value of 0 (straight Gabor) with a model of the
form Rs � msi � b where Ri is the response to each size, si is the Gaussian
size value and b is an offset term. The end-stopping index was defined as
�m. The curvature index (CI) was defined as CI �
�Rcurv��2, Rcurv��2� � Rcurv�0

�Rcurv��2, Rcurv��2� � Rcurv�0

, where �Rcurv��2, Rcurv��2� is the mean re-

sponse to the two highest curvature-value banana Gabors, and Rcurv�0 is
the response to the straight Gabor at the largest size and at each site’s
preferred orientation.

Linear classification analysis. We trained support vector machines with
a linear kernel using the MATLAB function fitcecoc.m. We used a one-
versus-one approach, with support vector machines (SVMs) trained to
discriminate between pairs of images using fivefold cross-validation.
Each site’s spike rates were z-scored using the mean and SD of all its
responses for that session. There was an average of 38 � 8 response
vectors in every positive and negative class per comparison. To estimate
the chance accuracy for each paired comparison, we concurrently trained
SVMs using the same set of data vectors, but with shuffled labels. This
analysis was done within each experimental session and accuracy values
were averaged across sessions.
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Results
RFs
We collected spike rate responses from a total of 870 sites in areas V1
(from three monkeys, R, U, and V), area V4 (monkeys F, T), and PIT
(monkey G), using 50- and 96-channel arrays in four monkeys (F, T,
U, and V), three-channel electrode bundles in a fourth animal (R)
and a 50-channel array in the last monkey (G). The arrays recorded
single-unit and multi-unit activity (henceforth collectively referred
to as “sites”). The median RF width for each neuronal population

ranged up to 5.20 � 1.05° at median eccentricities from 1.8 � 0.2 to
3.9 � 0.1° from the fovea (Fig. 2a,b, Table 1). We placed all stimuli at
the center of the aggregate response field of each recording array (the
stimulus position was not optimized for any given site). We pre-
sented 160 different banana wavelets to each population and re-
corded the responses of each site to every stimulus. These wavelets
varied in three features, size, orientation, and curvature, and were
displayed on an average gray background (Fig. 2c). There were eight
different orientations � 0 to 157° in steps of 22.5°; four sizes, pre-
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Figure 2. RFs and stimulus set. a, Response fields for every site recorded per animal. Each panel represents retinotopic space and each blue–yellow circle shows the region of space that elicited
the highest responses for every site (2 SDs over the mean firing rate). Each circle is weighed by peak firing rate magnitude. The red square outline shows the position of the image, the small red square
is the fixation point, and the dashed white lines show the horizontal and vertical meridians. b, RF width as a function of eccentricity for each monkey/visual area (colors: V1, V4, and PIT). Each point
represents one response field in a. Transparent circles highlight RFs that also passed a strict statistical test (median response � 0 for all used positions, Wilcoxon rank-sum test, p � 0.05), and the
radius of each transparent circle shows its relative firing rate magnitude. c, Subset of “banana” Gabors showing variations in size and curvature; there were seven more similar subsets at different
orientations. The red open square outline in c corresponds to that in a. Small red squares represent the fixation point and illustrate our definitions for “convex” and “concave”: if the inner surface of
the curve faced the fixation point (upper right, positive curvature), then the curve was described as “concave.”
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sented in octave steps relative to a maxi-
mum area: for the V1 monkeys, maximum
stimulus dimensions were 2.5° 
 2.5°
(monkeys U and V) and 5° 
 5° (monkey
R); 9° 
 9° (V4 monkeys); and 9° 
 9° and
18° 
 18° (PIT monkey). There were also
five curvature values (�8, �6, �, �6, and
�8 used in the MATLAB script, henceforth
referred to as�2,�1, 0, 1, and 2 for simplic-
ity), defined along a “convex–concave” axis
based on each site’s orientation preference
and stimulus position (“concave” indicates
curvature that was concave toward fixa-
tion—or concentric—and “convex” indi-
cates curvature that was convex toward
fixation; Fig. 2c,d; see Materials and Meth-
ods for a more quantitative description).

Tuning for orientation, size, and
curvature across visual areas
We investigated whether the banana Ga-
bor stimuli elicited reliable responses
from each site as defined by one-way
ANOVA conducted for orientation, size,
or curvature (each test computed using
the trial-by-trial responses of a given site
to variations of each modality; Fig. 3a).
We found that the majority of sites in V1
and V4 showed reliable response modula-
tion to at least one of these features, in
contrast to a minority of PIT sites. Orien-
tation modulated the responses of 68 �
3% of V1 sites (mean � SEM; p � 0.05,
one-way ANOVA), 59 � 2% of V4 sites,
and 17 � 3% of PIT sites. Size modulated
60 � 3% of V1 sites, 66 � 3% of V4 sites,
and 34 � 4% of all PIT sites. Finally, cur-
vature modulated 57 � 3% of V1 sites,
66 � 2% of V4 sites, and 14 � 3% of PIT
sites (Fig. 3b, top). One reason that some
sites might not have been tuned to the ba-
nana Gabors is that the stimulus could
have been centered outside of their aggre-
gate RFs. Because these were ensemble
recording experiments, we could not con-
currently optimize the stimulus position
for all sites. To determine how image
placement affected the reliability of size
and curvature tuning, we repeated the
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Figure 3. Tuning to orientation, size, and curvature. a, Responses of one V4 multi-unit (monkey T) to changes in orientation
(left), size (middle), and curvature (right) (all show mean � SE). Orientation tuning was computed at the preferred size using
straight Gabors, size tuning was computed using the preferred orientation and all curvatures, and curvature tuning was computed
at the preferred orientation and size. All values are baseline subtracted. b, Percentage of sites within each area with tuning ( p �
0.05, one-way ANOVA) for orientation, size, or curvature tuning (top, all sites; bottom; only sites with strong orientation tuning at
the smallest Gabor size). Symbols show mean percentage � SE via bootstrap. c, Distributions of preferred values for orientation
(left), size (middle), and curvature (right) within each area using sites with strong tuning ( p � 0.05, one-way ANOVA). Top row,
Results using all sites; bottom row, results using only the best-centered sites. Each point is a mean percentage � SE via bootstrap.
Circles around each point denote a statistical deviation from a flat distribution (via bootstrap test). The dashed black line shows the
distribution of preferred values expected by chance.

Table 1. RF statistics and stimulus information

Monkey

V U R T F G
Area

V1 V1 V1 V4 V4 PIT

Median RF width (°) 0.19 � 0.01 0.33 � 0.01 — 6.47 � 0.21 5.53 � 0.71 8.10 � 0.32
Median RF eccentricity (°) 2.57 � 0.01 2.4 � 0.1 — 3.94 � 0.1 3.50 � 0.2 1.64 � 0.1
Site type Multiunit Multiunit Single and multiunit Multiunit Multiunit Multiunit
Image frame size (°) 2.5 
 2.5 2.5 
 2.5 5 
 5 9 
 9 9 
 9 9 
 9/18 
 18
Largest Gabor size (°) 2.1 
 2.1 2.1 
 2.1 4 
 4 7.2 
 7.2 7.2 
 7.2 7.2 
 7.2/14.4 
 14.4
Smallest Gabor size (°) 	0.3 
 0.3 	0.3 
 0.3 	0.5 
 0.5 	0.8 
 0.8 	0.8 
 0.8 	0.8 
 0.8/	1.6 
 1.6

RF statistics were derived using statistically reliable RFs (see Materials and Methods).
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one-way ANOVA test using a subset of sites that showed modu-
lation to changes in orientation for the smallest straight Gabor
(p � 0.05, one-way ANOVA). This set of sites was meant to reveal
whether our unbiased-sample population added noise by being
off-center. We will refer to this set as the “best-centered” sites.
This was a strict selection criterion because the smallest Gabors
could be smaller than the median RF size per area (Table 1). This
best-centered set was small: only 24% of all our V1 sites (81/334)
showed orientation selectivity using the smallest Gabor (p �
0.05, one-way ANOVA with orientation as the sole factor). In V4,
50% of sites (190/382) passed the test, as did only 14% of PIT sites
(20/144). Having isolated this best-centered group of cells, we
investigated again how many of them showed reliable tuning to
orientation (using responses to all sizes), size, and curvature. The
resulting trends with these best-centered sites were not qualita-
tively different from the general population (Fig. 3b, bottom,
Table 2). We will continue to use all sites in subsequent analyses,
sometimes repeating the analyses using the best-centered subset
as a control.

Given that many sites showed significant modulation by ori-
entation, size, and curvature, we then investigated whether some
feature values were preferred over others. There were eight dif-
ferent orientations (Norient), four sizes (Nsize), and five curvature
values (Ncurva). If the populations showed uniform preferences
for all feature values, the percentage of sites preferring each value
should be 12.5% for orientation, 25% for size, and 20% for cur-
vature. We calculated the percentage of sites that preferred each
stimulus value and used a bootstrap to determine whether each
calculated percentage was statistically different from the uniform
values (if the 95% confidence intervals of the bootstrap distribu-
tion did not include the uniform value, it was designated as sta-
tistically different). We found that, on average, sites showed a
approximately uniform distribution only for orientation. In V1,
V4, and PIT, many orientation values were statistically underpre-
ferred or overpreferred, but the mean absolute deviation from the
baseline value of 12.5% was 3.0 � 0.5% (V1), 3.5 � 0.5% (V4),
and 5.1 � 0.9% (PIT). This is in contrast to size, where the per-
centage deviation for some values were 18.9 � 1.3% (V1), 16.0 �
1.3% (V4), and 8.3 � 1.9% (PIT), and curvature, 14.4 � 1.0%
(V1), 13.4 � 0.6% (V4), and 12.7 � 1.5% (PIT; Fig. 3c). Nearly
50% of V1 sites showed their highest responses to the largest
banana stimulus, whereas V4 sites were mostly end-stopped, as
has been noted previously (Desimone and Schein, 1987). When it
came to curvature values, most V1 sites showed a bias for straight
Gabors, most V4 sites preferred curved stimuli and PIT sites pre-

ferred both straight and positive (concave) curvature. We explore
these preferences in detail below.

Interactions in tuning
Many sites showed tuning for orientation, size, and curvature: how
did these preferences interact? There are three possible interactions
to consider: curvature preferences versus size preferences (i.e., end-
stopping), orientation versus size, and orientation versus curvature.
Because curved Gabors contain multiple orientations, orientation
and curvature are not separate stimulus features and we will not
explore this relationship further. We begin with the interaction be-
tween curvature and size because this was our key hypothesis and
then we will explore interactions between orientation and size.

Curvature versus end-stopping
For each site, we plotted its curvature tuning at different sizes
(and vice versa). Figure 4a shows three typical sites: sites a and c
were length summating in that they responded better to large
Gabors than to small; these sites responded best to straight Ga-
bors compared with curved ones. The middle site (Fig. 4b) was
end-stopped because it responded better to short Gabors than to
large and this site responded better to either concave or convex
stimuli compared with straight stimuli. Based on fMRI findings,
we had hypothesized the existence of such an inverse relationship
between end-stopping and curvature such that end-stopped neu-
rons should have a preference for curved stimuli. To quantify the
relationship between size and curvature tuning across the popu-
lation, we used an end-stopping index and a curvature index (CI)
for each site. The CI is �0 if the site responds more to the curvy
Gabors, 0 if the responses are equal to both curvy and straight
Gabors, and �0 if the straight Gabor is preferred. The end-
stopping index is positive if a cell responds best to the smaller
stimuli and negative if the site responds best to the largest stimuli.
We found that sites that showed monotonically increasing responses
to increasing size (length-summating sites) preferred straight Ga-
bors, whereas sites that showed a smaller response to the longest
stimuli (end-stopped sites) tended to prefer curved stimuli. This is
apparent as a correlation between curvature and end-stopping indi-
ces for all recorded sites: the Pearson correlation coefficients were
0.66 for V1 sites (n � 334), 0.59 in V4 (n � 382), and 0.48 in PIT
(n � 144) (p � 3 
 10�3 for all tests, permutation test; Fig. 4b). We
also repeated this correlation analysis using only the best-centered
sites and the trend was similar (Pearson correlation coefficient were
0.60 for V1 sites, 0.59 in V4, and 0.65 in PIT; p � 3 
 10�9, 2 

10�19, and 2 
 10�3, respectively).

Part of our original hypothesis was that sites with more eccen-
tric RFs would show a preference for progressively straighter
stimuli (for a given size). Therefore, we investigated whether the
CI trended toward more negative values as RF eccentricity in-
creased. Because we used chronically implanted arrays for the
majority of these experiments, with stimuli scaled to aggregate RF
size, we could not sample responses across a wide eccentricity
range for each area, so we had no reason to expect a strong cor-
relation. However, when we fitted a regression line to the CI
versus eccentricity distribution for each animal’s population,
most of the individual populations showed a trend toward nega-
tive curvature values with increasing eccentricity (Table 3).
Therefore, there was a trend for sites with more eccentric RFs to
prefer straighter Gabors.

As before, it was important to ensure that the relationship
between curvature preferences and end-stopping was not simply
due to off-center placement of the stimulus. We already pre-
sented one control, which was to examine that relationship only

Table 2. Percentage of sites with reliable tuning for orientation, size, and
curvature

V1 V4 PIT

All sites (%)
Orientation 68 � 3 59 � 2 17 � 3
Size 60 � 3 66 � 3 34 � 4
Curvature 57 � 3 66 � 2 14 � 3

Best-centered sites (selected using responses
to smallest Gabor, tested at all sizes)

Orientation 95 � 3 91 � 2 59 � 11
Size 74 � 5 94 � 2 55 � 11
Curvature 69 � 5 91 � 2 26 � 10

“All sites” refers to all recorded sites and “best-centered sites” refers to sites with strong orientation tuning at the
smallest Gabor size. Reliable tuning was defined as variation across stimulus feature values (across-group variation)
that was larger than within-stimulus feature values (within-group variation) per one-way ANOVA, each test per-
formed with an average number of values n �1200�17 (V1), 1662�21 (V4), and 270�5 (PIT). Mean F-statistic
values per area were 28.9 � 2.2 (V1), 43.5 � 3.1 (V4), and 2.0 � 0.1 (PIT).
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in the best-centered sites. A more compre-
hensive version of this control is to use the
distances from the banana Gabor center
to each site’s RF center. We used this
Gabor-to-RF distance as one predictor of
the CI in a linear regression analysis. We
fit one linear model per area (V1, V4, or
PIT): in each model, the dependent vari-
able was the CI distribution for the given
area and the predictor variables com-
prised the size tuning index per site, each
site’s RF distance to stimulus center and a
measure of tuning strength (the F-statistic
of the site’s orientation tuning using the
smallest straight Gabor). We found that
the end-stopping index was a reliable pre-
dictor of CI while controlling for RF-
stimulus distance and tuning strength (for
area V1, the linear regression weight was
0.22, 95% confidence interval: 0.20 to
0.25; for V4, 0.18, 95% confidence inter-
val, 0.15 to 0.21; and for PIT, 0.08, 95%
confidence interval, 0.06 to 0.11; Table 4).
Each of these three models were good fits
to the dependent variable (F-statistic vs
constant model ranged from 19 to 90 for
all three models, p � 9 
 10�11). There-
fore, we conclude that end-stopped sites
tended to prefer curved stimuli even after
accounting for RF-stimulus distance and
tuning strength.

Imaging studies show that there is a
large region in the parafoveal representa-
tion of dorsal V4 that responds to curved
objects more so than to rectilinear objects
(Yue et al., 2014). This posterior curvature
patch occupies much of dorsal V4 and
has higher sensitivity to simple curvature
compared with more anterior curvature
patches, which prefer more complex
curved features. We quantified the mar-
ginal frequency distribution of our CI for
each area to determine whether our sam-
pling showed this pattern (Fig. 4c). The CI
is �0 if a given site responds more to the
curvy Gabors, 0 if the responses are equal to both curvy and
straight Gabors, and �0 if the straight Gabor is preferred. The
median CI values for V1, V4, and PIT (�SE) were �0.20 � 0.02,
0.23 � 0.02, and �0.02 � 0.02, respectively. Therefore, as a pop-
ulation, V1 sites preferred the straight Gabor, V4 showed prefer-
ences for the most curved Gabors, and PIT showed an
intermediate preference level for both. Because our curvature
stimuli were relatively simple, this is consistent with the imaging
data and with previous interpretations of V4 as a processing hub
for simple curvature.

Preferences for curvature vary along the visual hierarchy
We found that V1 sites tended to prefer straight Gabors, whereas
V4 and PIT sites tended to prefer curved Gabors (Fig. 3c). In
previous studies, V4 neurons were found to prefer one direction
of curvature to its opposite, especially when that curvature is the
convex part of a bounded object (Pasupathy and Connor, 1999).
Most of the V4 sites that we tested also showed a dominant pref-

erence for one direction of curvature, but did not as a population
prefer either concavity or convexity. To further explore convex-
ity/concavity tuning in these areas, we fit each site’s curvature
tuning with a polynomial of the form R � Aquadx

2 � Alinearx � C,
where the linear weight Alinear can be thought of as a convexity-
concavity preference value: Alinear �� 0 if convex Gabors are pre-
ferred, Alinear �� 0 if concave Gabors are preferred, and Alinear �
0 if neither is preferred over the other. The quadratic component
Aquad can be interpreted as a curvature preference where, given
Alinear � 0, Aquad �� 0 if both curved stimuli (convex or concave)
are preferred, Aquad �� 0 if straight stimuli are preferred over
curved, and Aquad � 0 if curved and straight stimuli are equally
effective. Site 1 in Figure 5a has a negative Aquad; it responds best
to straight stimuli and not well to either direction curved stimuli.
Site 2 had a positive Aquad and it responded better to either con-
cave or convex stimuli than to straight. Site 3 had a positive Alinear

and a positive Aquad and it preferred concave stimuli to either
straight or convex. We plotted the values of Aquad against Alinear
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Figure 4. Relationship between end-stopping and curvature. a, Size-tuning in three multi-units (site A: V1, monkey V; sites B
and C: V4, monkey T) using Gabors with five different curvatures (colors per legend). EI, End-stopping index. All values are baseline
subtracted and normalized. b, CIs for every site as a function of its end-stopping index across all areas (V1� red, V4�black, PIT�
blue). Each point shows the indices for one site and the transparent circles highlight the sites that were well centered. The colored
lines show the total least-squares regression. c, Marginal frequency distributions of CI values across all visual areas.
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Table 3. Relationship between curvature and eccentricity

Monkey

V U R F T G

Slope (95% confidence interval) 0.57 (0.36, 0.77) �0.30 (�0.49 to �0.10) 0.02 (�0.03 to 0.06) �0.06 (�0.09 to �0.03) �0.02 (�0.07 to 0.02) �0.03 (�0.04 to �0.01)

Linear model fits to distributions of end-stopping as a function of eccentricity; each value shows the linear fit slope (with 95% confidence interval).

Table 4. Curvature index linear regression weights

End-stopping (95% confidence interval),
p-value

RF% stimulus center distance (95% confidence interval),
p-value

Tuning strength (95% confidence interval),
p-value

V1 0.23 (0.20�0.25), 1.3 
 10 �41 �0.02 (�0.05 to 0.01), 0.13 0.03 (0.00 to 0.06), 0.04
V4 0.18 (0.15 to 0.21), 1.1 
 10 �26 �0.04 (�0.07 to �0.02), 2.0 
 10 �3 0.05 (0.02 to 0.08), 1.5 
 10 �3

PIT 0.08 (0.06 to 0.11), 2.5 
 10 �9 �0.05 (�0.08 to �0.02), 3.8 
 10 �4 �0.03 (�0.06 to �0.01), 2.0 
 10 �2

Partial regression weights for the dependent variable of curvature index and independent variables (no. of dependent values � V1, 334; V4, 382; PIT, 144). Left, end-stopping; middle, RF distance to stimulus center; right, site-tuning
strength. Weights are reported for each area. Each cell shows the weight and 95% confidence interval.
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for each site and found that most V1 sites showed a negative Aquad

(i.e., they preferred straight to curved stimuli) with Alinear cen-
tered on zero (they did not prefer either concave or convex stim-
uli). Most V4 sites showed positive Aquad values (they preferred
curved stimuli to straight) and well distributed Alinear values be-
cause most preferred either concave and convex Gabors. Most
PIT sites showed positive Alinear values (i.e., they favored stimuli
that were concave toward fixation; Fig. 5b,c). To determine the
exact percentage of sites with preferences for convex, concave, or
symmetric tuning per area, we binned each area’s Alinear values
into five bins, nominally described as “convex” (Alinear � �0.15),
“slightly convex” (�0.15 � Alinear � �0.05), “symmetric”
(�0.05 � Alinear � 0.05), “slightly concave” (0.05 � Alinear �
0.15), or “concave” (Alinear � 0.15). Thirty-four percent of all V1
sites had symmetric Alinear values compared with 20% of V4 sites
and 20% of PIT sites. In V4, most sites were “slightly convex” or
“slightly concave” (24%, 23%), whereas most PIT sites were
“slightly concave” (31%).

Because we found many sites that preferred concave Gabors,
especially in PIT, we looked for evidence that this preference
might be correlated with selectivity for real-world bounded ob-
jects, whose outline is usually concave relative to fixation. We
presented faces (curvy) and artificial gadgets (rectilinear) such as
chairs, monkey cages, and monitors (20 faces, 20 gadgets; Fig.
6a). We investigated whether, in each visual area, curvature se-
lectivity correlated with classification accuracy for faces and ob-
jects. We sorted all sites by their CI and called the bottom third of
all sites the “low-CI” population and the top third as the “high-
CI” population. Across all V1 sites, the mean CI value of the lower

third group was �0.30; for the high-CI group, it was �0.01;
across all V4 sites, �0.45 and �0.02; and for the PIT sites, �0.50
and �0.03. We then trained linear classifiers (SVMs) to classify
each image against each other (i.e., an one-vs-one scheme) using
responses from either the low-CI or high-CI populations with
10-fold cross-validation. We corrected against biases by training/
testing SVMs using shuffled labels and subtracted the classifica-
tion accuracy of each shuffled-label SVM from the classification
accuracy obtained using the correct labels. We found that, across
all areas, low-CI and high-CI populations generally led to the
same performance levels for individual image categorization (V1
low-CI and high-CI groups scored 5.00 � 0.13% and 5.39 �
0.15% over baseline; V4 sites, 5.80 � 0.14% and 6.26 � 0.15%
over baseline; PIT, low-CI group scored at 4.77 � 0.20% and the
high-CI group at 6.27 � 0.22%, respectively). We obtained these
values by averaging all image versus image classification accuracy
scores regardless of whether the image was a face or an object.
Next, we compared the performance of the classifiers on distin-
guishing images of the same category (faces vs faces, objects vs
objects). Here, we found that PIT populations with higher mean
CIs were better at identifying faces; the populations did not lead
to strongly different levels of SVM accuracy, but the trend was
statistically reliable, as we describe below. High-CI PIT cells al-
lowed a 6.86 � 0.27% intracategorical accuracy level for faces and
5.68 � 0.30% for objects compared with low-CI PIT cells, which
scored 5.44 � 0.26% and 4.10 � 0.24%. These differences were
less evident as we moved lower in the visual hierarchy: high-CI V1
cells allowed a 5.73 � 0.18% intracategorical accuracy level for
faces and 5.05 � 0.24% for objects compared with low-CI cells,
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Figure 6. Curvature tuning and preferences for faces. a, Images used to test preferences for faces and objects. b, Classification accuracy (minus shuffled-label baseline) within each area using
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which scored 5.42 � 0.18% and 4.57 � 0.12%; high-CI V4 cells
allowed a 6.62 � 0.16% intracategorical accuracy level for faces
and 5.90 � 0.25% for objects compared with low-CI cells, which
scored 6.30 � 0.18% and 5.30 � 0.14% (Fig. 6b). Because these
differences were small, we used a three-factor ANOVA to deter-
mine whether these differences were likely to emerge from the
same underlying distribution of accuracy scores. This three-way
ANOVA was run on a sample of 240 scores to examine the con-
tributions of visual area (V1, V4, and PIT), CI value (low vs high),
and image category (face vs object). Overall, the model showed
statistical effects for all three factors: there was an area effect
(F(2,30) � 16.2, p � 10�10), a CI value effect (F(1,230) � 42.1, p �
10�10), and a category effect (F(1,230) � 63.1, p � 10�10). There
was also a CI by area interaction (F(2,230) � 8.8, p � 0.0002). A
contrast using the MATLAB multcompare.m function showed
that the marginal accuracy mean for the PIT high-CI po-
pulation, when classifying faces, was statistically higher than its
classification accuracy for objects, and was also higher than the
low-CI PIT population scores for either category.

In summary, we found that sites at multiple stages along the
visual hierarchy showed differences in their preferences for
curved Gabors, with V1 sites favoring straight Gabors, V4 sites
favoring curved Gabors, and PIT sites showing a bias for concave
Gabors. Given the prevalence of face selectivity in IT, this raised
the possibility that face selectivity may owe some of its origins to
this rudimentary effect. We trained linear classifiers using groups
of sites in every area that differed in their CI value and found that
the PIT cells with higher CI values had a small but reliable advan-
tage of 1.4% accuracy at face classification.

Size versus orientation tuning
We found that end-stopping and curvature were correlated
across the ventral stream, consistent with previous fMRI findings

(Srihasam et al., 2014) and one electro-
physiology study in the cat (Dobbins et al.,
1987). In addition, we collected responses
to various combinations of orientation
and size values. There are precedents in
the literature reporting an association be-
tween orientation and size tuning: V1 cells
show a reduction in orientation tuning
width for Gabors of increasing size with-
out a change in preferred orientation
(Chen et al., 2005). To determine whether
this association was present beyond V1,
we conducted the following analyses. For
each site in our dataset, we plotted its ori-
entation tuning as evoked by straight Ga-
bors of different stimulus sizes (Fig. 7a).
We fit each orientation tuning with a von
Mises function to compute each site’s pre-
ferred orientation (�0

u,s, where u is the site
and s is the stimulus size) and tuning
width (d u , s) and investigated whether ori-
entation tuning changed as a function of
size. First, for each site, we subtracted the
preferred orientation measured with the
largest Gabors from the preferred orienta-
tions measured with the smaller Gabors.
We found that none of the three areas
showed a statistical relationship between
orientation preference and stimulus size:
V1 sites showed a mean tuning center dif-
ference of 3.3° � 1.8° across sizes (p �

0.84, F(2,223) � 0.17, one-way ANOVA, size as factor), V4 sites
9.6° � 4.2° (p � 0.53, F(2,238) � 0.63) and PIT sites �1.4° � 1.1°
(p � 0.97, F(2,86) � 0.04; Fig. 7b). In contrast, both V1 and V4
sites showed a reduction in tuning width with increasing stimulus
size: V1 sites showed a reduction in tuning width value from 1.5
to 0.7 (p � 3.6 
 10�4, F(3,305) � 6.32, one-way ANOVA) and V4
sites from 1.2 to 0.7 (p � 0.46, F(3,339) � 2.7), whereas PIT sites
showed a nonlinear relationship between tuning width and stim-
ulus size that was not statistically reliable (p � 0.29, F(3,123) �
1.27; Fig. 7c). This confirmed previous observations that V1 sites’
optimum orientation does not change as a function of size,
whereas tuning width narrows for larger stimuli (Chen et al.,
2005; Liu et al., 2015), and we further extended this observation
to area V4.

Discussion
Category-selective domain locations in IT are correlated with
retinotopic organization (Levy et al., 2001) and with maps of
curvature selectivity (Nasr and Tootell, 2012; Kornblith et al.,
2013; Srihasam et al., 2014; Yue et al., 2014). It has been suggested
that the correlation between retinotopy and category arises be-
cause of preferred viewing behavior for different categories of
objects: faces are mapped to central visual field representations in
IT and scenes to more peripheral eccentricities because we fove-
ate faces and view scenes more with the peripheral visual field
(Hasson et al., 2002). However, the causality is unclear: when a
primate experiences a visual category, does its cortex develop
functional domains specialized for this category with a conse-
quent refinement of low-level features (e.g., curvature tuning)
that optimize the domain’s preference? Or does cortex have mul-
tiple retinotopic proto-maps that then localize selectivity for dif-
ferent visual categories based on low-level features? There is a
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Figure 7. Relationship between orientation tuning and size. a, Orientation tuning for three V1 sites (animal V); each plot shows
responses to a straight Gabors at four different sizes (indicated by colors). b, Mean difference in preferred orientation (�SEM) as
a function of Gabor size relative to the biggest Gabor size. Each curve shows a different area. c, Mean Gaussian tuning width as a
function of stimulus Gabor size. Asterisks show which tuning curves were statistically different from a flat model ( p � 0.050,
one-way ANOVA).
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correlation between low-level image features and category do-
mains (Rice et al., 2014; Andrews et al., 2015) but, again, causality
could go either way: differences in the average statistics of differ-
ent categories could bias category-selective domains to prefer
low-level features common to their category or a map of low-level
feature selectivity could govern the localization of category do-
mains. Here, we provide evidence for a neural mechanism that
can link these hypotheses: because of the prevalence of end-
stopping, a retinotopic map necessarily generates a curvature se-
lectivity map, and such a low-level feature map could determine
the locations of category domains both because of the statistical
differences in low-level features of those categories and because
of differences in viewing behavior.

In the visual system, RF size varies with eccentricity (Hubel
and Wiesel, 1974; Dow et al., 1981). Because many cells in V1 and
beyond are end-stopped (Hubel and Livingstone, 1987), RF size
should be correlated with selectivity to changes in orientation
such as end points, corners, and curvature (Hubel and Wiesel,
1965). In fact, this has been shown in cat V1 (Dobbins et al., 1987)
and, in this study, we have shown that neuronal sites with end-
stopped RFs are more selective for curvature compared with sites
with length-summating RFs across the ventral stream. This result
explains the fMRI observation that that maps for eccentricity are
correlated with maps for curvature (Srihasam et al., 2014). Imag-
ing evidence suggests that patches along the ventral stream (from
V4 to anterior IT) have increasing preferences for curvature
(Wilkinson et al., 2000) and that curvature patches are located
close to face patches (Yue et al., 2014). Our electrophysiology
results showed a related elaboration in curvature tuning along the
ventral stream, where most V1 sites showed preferences for
straight Gabors, whereas most V4 and PIT sites showed prefer-
ences for curved Gabors. We further found that V4 and PIT sites
differed in the symmetry of their tuning: most V4 sites responded
best to either convex or concave curvature, whereas PIT sites
showed preferences for contours that were concave toward
fixation.

Convexity and concavity have been the focus of many psycho-
physical and imaging studies of figure– ground segregation. In
those studies, convexity and concavity were defined relative to the
object center (Hoffman and Richards, 1984; Driver and Baylis,
1996; Pasupathy and Connor, 1999; Haushofer et al., 2008). Our
curved Gabors were ambiguous with respect to figure– ground,
so our use of the terms “convex” and “concave” are not the same
as in previous studies (we defined concave and convex relative to
the fixation point). We found that the population of PIT cells
preferred curvatures concave toward the fixation point, an image
feature that would occur on fixating a round object such as a face.
To test this association, we investigated whether PIT populations
with higher CIs showed any advantage in intracategorical face/
face encoding compared with intracategorical object encoding.
The results showed a small but statistically reliable ability of
curvature-preferring PIT sites to perform better in intracategori-
cal face discrimination compared with the ability of rectilinear-
preferring sites. We were somewhat surprised by the small
advantage in accuracy, but the distributed nature of cortical en-
coding is a good a priori reason for why any randomly sampled
set of PIT sites could allow classifiers to perform well (Haxby et
al., 2001).

Others have shown that V4 cells prefer curved to rectilinear
objects (Gallant et al., 1993) and that these curvature preferences
are specific for one given combination of curvature and orienta-
tion values (Pasupathy and Connor, 1999). In our sample, al-
though some V4 sites responded well to both convex and concave

curvature (relative to fixation), most sites preferred one over the
other, consistent with previous studies (Pasupathy and Connor,
1999). However, we also discovered some (20%) of V4 sites with
convexity/concavity tuning curves that were symmetric. This
could reflect one of the following: (1) electrodes recording at sites
with columns of single cells with true mirror selectivity for cur-
vature, akin to IT face cells that are view invariant; (2) electrodes
recording at the junction of curvature-tuned columns of single
cells with opposing preferences; or (3) electrodes recording at
sites with single cells that particularly like differences in orienta-
tion between the center and surround despite the center stimulus
preference. Indeed, several mechanisms could account for curva-
ture selectivity; for example, alignment of inputs along a curved
contour, nonspecific surround suppression, or orientation-
selective end-stopping. Responsiveness to both signs of curvature
would be consistent with the second and third mechanisms
above, but not the first. Moreover, it has been shown that many
neurons show stronger suppression when the stimulus orienta-
tion at the RF center is the same as stimulus orientation at the RF
surround (Hubel and Wiesel, 1965; Cavanaugh et al., 2002; Shen
et al., 2007; Trott and Born, 2015), which mitigates against the
second mechanism. Therefore, our results and those of others
support the idea that end-stopping can give rise to selectivity
for curvature over straight contours without requiring curva-
ture to be generated by precise alignment of inputs along a
curved trajectory.
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